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Abstract

This work presents a new multi-layer laminated composite structure model to predict the mechanical behaviour of

multi-layered laminated composite structures. As a case study, the mechanical behaviour of laminated composite beam

(90�/0�/0�/90�) is examined from both a static and dynamic point of view. The results are compared with the model

‘‘Sinus’’ and finite element method studied by Abou Harb. Results show that this new model is more precise than older

ones as compared to the results by the finite element method (Abaqus). To introduce continuity on the interfaces of

each layer, the kinematics defined by Ossadzow was used. The equilibrium equations and natural boundary conditions

are derived by the principle of virtual power. To validate the new proposed model, different cases in bending, buckling

and free vibration have been considered.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Now composite materials are used in nearly all phases of structure work, from space craft to marine

vessels, from bridges and domes on civic buildings to sporting goods. The significant increase in the use of

composite materials structure calls for the development of rigorous mathematical methods capable of

modelling, designing and optimising of the composite under any given set of conditions.

One of the major challenges in computational structural mechanics is the development of the advanced

models and numerical techniques in order to provide efficient tools exhibiting good interior and edge so-

lutions.
In this paper we are introducing an ‘‘exponential function’’ as a shear stress function; the exponential

functions are found to be very much richer than trigonometric Sine and Cosine functions in their Fourier
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development series. According to the definition of the transverse shear stress function, the existing lami-
nated composite beam is divided into two broad categories; firstly, the global approximation models and

secondly the discrete layer approximation models. The equivalent single-layer laminate theories are those in

which a heterogeneous laminated plate is treated as a statically equivalent, single layer having a complex

constitutive behaviour, reducing the 3D continuum problem to 2D problem.

The equivalent single layer models are:

• Kirchhoff (1850) and Love (1934) present their theory (or classical theory) in which deformation due to

transverse shear is neglected, implies that the normal to the mid-plane remains straight and normal at
mid-surface after deformation. This theory can be used for thin beams;

• Reissner (1945) and Mindlin (1951) present their theory (or first order theory). That the first order de-

formation theory extends the kinematics of the classical laminated plate theory by including a gross

transverse shear deformation in its kinematic assumption, the transverse shear strain remain constant

with respect to the thickness coordinate, implies that the normal to the mid-plane remains straight

but not normal to mid-surface after deformation due to shear effect. The first order theory requires shear

correction factors, which are difficult to determine for arbitrary laminated composite plate;

• and the higher order models are based on the hypothesis of non-linear stress variation through thickness
(Reddy, 1984; Touratier, 1991). These models are able to represent the section warping in the deformed

configuration.

However, these theories do not satisfy the continuity conditions of transverse shear stress at layer in-

terfaces. Although the discrete layer approximation theories are accurate, but they are rather complex in

solving problems because the order of their governing equations depends on the number of layers.

Di Sciuva (1987, 1993) and then Touratier (1991, 1992) proposed simplified discrete layer model with

only five variational unknowns (two membrane displacements, a transverse displacement and two rota-
tions), allowing the section to be represented wrapping in the deformed configuration for the Touratier

(1992) model. Nevertheless, in these two cases the compatibility conditions, both layer interfaces and the

Nomenclature

h beam thickness or height

h1 transverse shear function

H Heaviside step function

L beam length

m layer number

P � virtual power

ua membrane displacement
€UU differentiation w.r.t. time ¼ o2U=ot2

U1;1 differentiation w.r.t. x1 ¼ oU1=ox1
U � virtual speed

w transverse displacement

Greeks

c, ua transverse shear rotation
e strain

r stress

1526 M. Karama et al. / International Journal of Solids and Structures 40 (2003) 1525–1546



boundaries, cannot be satisfied. From Touratier�s work, (Beakou, 1991) and (Idlbi, 1995) proposed, res-

pectively, shell and plate models which satisfy both the stress continuity at interfaces and the zero stress

conditions at the boundaries.

Finally, He (1994) introduced the Heaviside step function which enables automatic satisfaction of the
displacement continuity at interfaces between different layers. The new discrete layer model presented

comes from the work of Di Sciuva (1993), He (1994) and Ossadzow et al. (1995), the displacement field is:

U1ðx1; x3; tÞ ¼ u01ðx1; tÞ � x3w;1ðx1; tÞ þ h1ðx3Þ/1ðx1; tÞ
U2 ¼ 0

U3ðx1; tÞ ¼ wðx1; tÞ

8<: ð1Þ

with transverse shear function:

h1ðx3Þ ¼ gðx3Þ þ
XN�1

m¼1

kðmÞ
1

�x3
2

�
þ f ðx3Þ

2
þ ðx3 � xðmÞ3 ÞHðx3 � xðmÞ3 Þ

�
ð2Þ

where, Hðx3 � xðmÞ3 Þ, the Heaviside Step function is defined as:

Hðx3 � xðmÞ3 Þ ¼ 1 for x3 P xðmÞ3

0 for x3 < xðmÞ3

(
ð3Þ

and f ðx3Þ is the shear refinement function, and gðx3Þ is the membrane refinement function, and the kðmÞ
I are

coefficients of the continuity.
New multi-layered laminated composite structures model (‘‘KAM’’):

In this work a new multi-layered laminated composite structure model is presented by using exponential

function as:

f ðzÞ ¼ ze�2ðz=hÞ2

gðzÞ ¼ �ze�2ðz=hÞ2
ð4Þ

for a multi-layered beam X, of uniform thickness �h� and X is referred to the co-ordinate system
R ¼ ð0=x1; x2; x3 ¼ zÞ with z being normal to the plate�s mid-surface R, C is the frontier of X. Then, the

domain X is such that:

X � R3; X ¼ R

�
�
�
� h
2
;
h
2

�
;� h

2
6 z6

h
2
=Mðx1; x2; zÞ 2 X;M0ðx1; x2; 0Þ 2 R;/ 
 MaxðzÞ

	
where / is the diameter of the X. and the closed domain €XX is set such that:

€XX ¼ X [ C=C



¼ Cedge [ Cz¼�h=2
�

From the beginning our objective was so clear, to find out a transverse shear stress function f ðzÞ, which
gives the mechanical behaviour of the composite laminated structures as much close as possible to the exact

3D solution by Pagano (1970) or finite element analysis in 2D (stress, strain plane), and better represen-

tation of the transverse shear stress in the thickness of the laminated structure. Since different higher order

polynomial and trigonometric function already has been tried which are as follow;

Ambartsumian (1958) where;

f ðzÞ ¼ z
2

h2

4

�
� z2

3

�
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Kaczkowski (1968), Panc (1975) and Reissner (1975) where;

f ðzÞ ¼ 5

4
z 1

�
� 4z2

3h2

�

Levinson (1980), Murthy (1981) and Reddy (1984) where;

f ðzÞ ¼ z 1

�
� 4z2

3h2

�
and finally Touratier (1991), where;

f ðzÞ ¼ h
p
sin

pz
h

� 

So, we took a start with an exponential function, because an exponential function has all even and odd

power in its expansion unlike Sine function, which have only odd power. So an exponential function is

much richer than a Sine function. If we take a look on the expansions of different transverse shear stress

functions as;

Reddy (1984):

f ðzÞ ¼ z 1

�
� 4z2

3h2

�
¼ z� 1:33

z3

h2

Touratier (1991):

f ðzÞ ¼ h
p
sin

pz
h

� 

¼ z� 1:645

z3

h2
þ 0:812

z5

h4
� 0:191

z7

h6
þ 0:0261

z9

h8

Present model:

f ðzÞ ¼ ze�2ðz=hÞ2 ¼ z� 2
z3

h2
þ 2

z5

h4
� 1:333

z7

h6
þ 0:666

z9

h8

As it is clear from expansions of the transverse shear stress functions, that the coefficient of successive terms
in �Sine� functions are decreasing more rapidly than present exponential function which are the main res-

ponsible to gives different mechanical behaviour of laminated structures.

For the transverse shear stress behaviour, it is very important that the first derivative of the transverse

shear stress function must give a parabolic response in the thickness direction of the laminate and satisfy the

boundary conditions.

2. Governing equations

From the virtual power principle, the equations of motion and the natural boundary conditions can be

obtained. The calculations are made in small perturbations. According to the principle of virtual power:

P �
ðaÞ ¼ P �

ðiÞ þ P �
ðeÞ ð5Þ

But the virtual power of the acceleration quantities are:

P �
ðaÞ ¼

Z
X

qU �T €UU dX ð6Þ
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we suppose:

Iw ¼
Z h=2

�h=2
qdx3; Iuw0 ¼ �

Z h=2

�h=2
qx3 dx3

Iw0 ¼
Z h=2

�h=2
qx23 dx3; Iux ¼

Z h=2

�h=2
qh1ðx3Þdx3

Ix ¼
Z h=2

�h=2
qh21ðx3Þdx3; Ixw0 ¼ �

Z h=2

�h=2
qx3h1ðx3Þdx3

ð7Þ

so, Eq. (6) becomes (see Appendix A for the mathematical detail):

P �
ðaÞ ¼

Z L

0

ðCðuÞu0�1 þ CðwÞw� þ Cð/Þ/�
1Þdx1 þ C

ðwÞ
w� ð8Þ

with,

CðuÞ ¼ Iw€uu01 þ Iuw0 €ww;1 þ Iux €//1

CðwÞ ¼ �Iuw0€uu01;1 þ Iw€ww� Iw0 €ww;11 � Ixw0 €//1;1

Cð/Þ ¼ Iux€uu01 þ Ixw0 €ww;1 þ Ix €//1

C
ðwÞ ¼ Iuw0€uu01 þ Iw0 €ww;1 þ Ixw0 €//1

ð9Þ

Now the virtual power of internal work is:

P �
ðiÞ ¼

Z
X
D

�T
: rdX ð10Þ

but,

D ¼
D11 D12 D13

D21 D22 D23

D31 D32 D33

������
������; r ¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

������
������

so, in two dimension:

D : r ¼ D11r11 þ 2D13r13 ð11Þ
Resulting stresses Nab, Mab and Pab are defined as;

N11 ¼
Z h=2

�h=2
r11 dx3; M11 ¼

Z h=2

�h=2
x3r11 dx3

P11 ¼
Z h=2

�h=2
h1ðx3Þr11 dx3; P13 ¼

Z h=2

�h=2
h1;3ðx3Þr13 dx3

ð12Þ

so Eq. (10) becomes (see Appendix B for the mathematical detail),

P �
ðiÞ ¼

Z L

0

ðN11;1u0�1 þM11;11w� þ ðP11;1 � P13Þ/�
1Þdx1 � N11u0�1 �M11;1w� þM11w�

;1 � P11/
�
1 ð13Þ

Now the virtual power of external loading is;

P �
ðeÞ ¼

Z
X
U �T � f dX þ

Z
C
U �T � F̂F dC ð14Þ
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but,

U �T ¼ ½U �
1 0 U �

3 �; f ¼
f1
f2
f3

24 35; F ¼
F1
F2
F3

24 35
with,

U �
1 ¼ u0�1 � x3w�

;1 þ h1ðx3Þ/�
1

U �
2 ¼ 0

U �
3 ¼ w�

we define;

�nni ¼
Z h=2

�h=2
fi dx3; Ni ¼

Z h=2

�h=2
Fi dx3

�mmi ¼
Z h=2

�h=2
x3fi dx3; Mi ¼

Z h=2

�h=2
x3Fi dx3

�ppi ¼
Z h=2

�h=2
h1ðx3Þfi dx3; P i ¼

Z h=2

�h=2
h1ðx3ÞFi dx3

ð15Þ

so Eq. (14) becomes (see Appendix C for the mathematical detail),

P �
ðeÞ ¼

Z L

0

ð�nn1u0�1 þ ð�nn3 þ �mm1;1Þw� þ �pp1/
�
1Þdx1 þ N 1u0�1 ðN 3 � �mm1Þw� �M1w�

;1 þ P 1/
�
1 ð16Þ

Now, by Eqs. (5), (8), (13) and (16), governing equations and natural boundary conditions for 8u0�1 , 8w�,

8/�
1:

CðuÞ ¼ N11;1 þ �nn1

CðwÞ ¼ M11;11 þ ð�nn3 þ �mm1;1Þ
Cð/Þ ¼ P11;1 � P13 þ �pp1

ð17Þ

And natural boundary conditions for 8u0�1 , 8w�, 8/�
1, 8w�

;1:

0 ¼ �N11 þ N 1

C
ðwÞ ¼ �M11;1 þ ðN 3 � �mm1Þ

0 ¼ �P11 þ P 1

0 ¼ M11 �M1

ð18Þ

The three-dimensional orthotropic constitutive law is:

r11

r22

r33

r23

r13

r12

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0
0 0 0 0 C55 0

0 0 0 0 0 C66

26666664

37777775
e11
e22
e33
2e23
2e13
2e12

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð19Þ

The dimension x2 is supposed unitary, and the effects of the r33 are neglected, so orthotropic law (19),
becomes;
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r11

r13

� 	
¼ C0

11 0

0 C55

� �
e11
2e13

� 	
ð20Þ

with,

e11 ¼ U1;1 ¼ u0�1;1 � x3w;11 þ h1/1;1; 2e31 ¼ h1;3/1 and C0
11 ¼

C11C33 � C2
13

C33

Now, the generalized constitutive law;

N11

M11

P11
P13

2664
3775 ¼

A11 B11
eKK 0

B11 D11
eTT 0eKK eTT eSS 0

0 0 0 eYY
2664

3775
u0�1;1
�w;11

/1;1

/1

2664
3775 ð21Þ

so, the governing equations (17), become:

CðuÞ ¼ A11u0�1;11 � B11w;111 þ eKK/1;11 þ �nn1

CðwÞ ¼ B11u0�1;111 � D11w;1111 þ eTT/1;111 þ �nn3 þ �mm1;1

Cð/Þ ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1 þ �pp1

ð22Þ

and the natural boundary conditions (18), become:

0 ¼ A11u0�1;1 � B11w;11 � eKK/1;1 þ N 1

C
ðwÞ ¼ �B11u0�1;11 þ D11w;111 � eTT/1;11 þ N 3 � �mm1

0 ¼ �eKKu0�1;1 þ eTT w;11 � eSS/1;1 þ P 1

0 ¼ �B11u0�1;1 � D11w;11 þ eTT/1;1 �M1

ð23Þ

Continuity coefficients (k): To find out the value of the continuity coefficients, the conditions of the

continuity of the transverse shear stress between each interfaces of the layers were used (Fig. 1);

rðmÞ
13 x3
�

¼ xðmÞ3



¼ rðmþ1Þ

13 x3
�

¼ xðmÞ3



ð24Þ

Interface of layer (1) and layer (2):

rð1Þ
13 x3
�

¼ xð1Þ3



¼ rð2Þ

13 x3
�

¼ xð1Þ3




L

1

3

1 (90˚)

2 (0˚)

3 (0˚)

4 (90˚)

h x

x

h/ 2

-h/2

h/4

-h/4

Fig. 1. Description of the beam.
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Q1
55/ðx1Þ g0ðxð1Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð1Þ3 Þ

2

!#

¼ Q2
55/ðx1Þ g0ðxð1Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð1Þ3 Þ

2

!
þ kð1Þ

1

#
ð25Þ

Interface of layer (2) and layer (3):

rð2Þ
13 x3
�

¼ xð2Þ3



¼ rð3Þ

13 x3
�

¼ xð2Þ3



Since, Q55 of the second and third layer are equal (Fig. 1), so,

Q2
55/ðx1Þ g0ðxð2Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð2Þ3 Þ

2

!
þ kð1Þ

1

#

¼ Q3
55/ðx1Þ g0ðxð2Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð2Þ3 Þ

2

!
þ kð1Þ

1 þ kð2Þ
1

#
ð26Þ

Now by Eqs. (25) and (26),

kð1Þ
1 ¼ kð1Þ

1 þ kð2Þ
1

kð2Þ
1 ¼ 0

ð27Þ

This shows that if the mechanical characteristics of the two consecutive layers are the same (Fig. 1), the
coefficient of the continuity will be zero (kð2Þ ¼ 0).

Interface of layer (3) and layer (4):

rð3Þ
13 ðx3 ¼ xð3Þ3 Þ ¼ rð4Þ

13 ðx3 ¼ xð3Þ3 Þ

Q3
55/ðx1Þ g0ðxð3Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð3Þ3 Þ

2

!
þ kð1Þ

1 þ kð2Þ
1

#

¼ Q4
55/ðx1Þ g0ðxð3Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð3Þ3 Þ

2

!
þ kð1Þ

1 þ kð2Þ
1 þ kð3Þ

1

#
ð28Þ

we have,

f 0ðxð1Þ3 ¼ �h=4Þ ¼ f 0ðxð3Þ3 ¼ h=4Þ and g0ðxð1Þ3 ¼ �h=4Þ ¼ g0ðxð3Þ3 ¼ h=4Þ
So, by Eqs. (26)–(28), gives;

Q1
55/ðx1Þ g0ðxð3Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð3Þ3 Þ

2

!#

¼ Q4
55/ðx1Þ g0ðxð3Þ3 Þ

"
þ ðkð1Þ

1 þ kð2Þ
1 þ kð3Þ

1 Þ �1

2

 
þ f 0ðxð3Þ3 Þ

2

!
þ kð1Þ

1 þ kð3Þ
1

#

0 ¼ kð1Þ
1 þ kð3Þ

1

kð1Þ
1 ¼ �kð3Þ

1

ð29Þ
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So, by Eqs. (27) and (29), Eq. (25) becomes;

Q1
55ðg0ðx

ð1Þ
3 ÞÞ ¼ Q2

55ðg0ðx
ð1Þ
3 Þ þ kð1Þ

1 Þ; kð1Þ
1 ¼ ðQ1

55 � Q2
55Þg0ðx

ð1Þ
3 Þ

Q2
55

and kð3Þ
1 ¼ ðQ2

55 � Q1
55Þg0ðx

ð1Þ
3 Þ

Q2
55

ð30Þ

Finite element analysis: Since no exact 3D solution exists for the considered case study, so ABAQUS

(finite element analysis software) is used to show the efficiency of the present model. In this paper finite
element results are taken as a reference for the comparison of different models of laminated composite

structures, done by Karama et al. (1993, 1998). The 3D approximation of the behaviour is carried out by

element type ‘‘CPS8’’ (quadrilateral element of eight node, 16 ddl per element). To validate the finite ele-

ment results, firstly it is necessary to find out the convergence of laminate meshing. So, for the given

problem, in static and dynamic, the convergence found to be at 1680 elements included 24 element in

thickness.

3. Some evaluations of the present model

3.1. Bending analysis

The static bending analysis is studied, so the virtual power of acceleration quantities are cancelled. Three

different bending analyses have been developed for three different specific boundary conditions. For the

simply supported conditions, the unknown variables are deduced directly by the equation of motions. For

clamped conditions, kinematic boundary conditions are used and, finally, in a free edge case, natural
boundary conditions are employed.

The beam studied has a length of L ¼ 6:35 m, a unitary width, and a thickness h ¼ 2:794 m in the thick

case and h ¼ 0:2794 m in the thin case. The beam possesses four layers of the same thickness at 90�/0�/0�/
90�. The material used for the four layers is boron epoxy. The mechanical properties of the 0� layer are as
follows (Widera and Logan, 1980):

E11 ¼ 241:5 GPa E22 ¼ E33 ¼ 18:89 GPa G23 ¼ 3:45 GPa G12 ¼ G13 ¼ 5:18 GPa

m23 ¼ 0:25 m12 ¼ m13 ¼ 0:24

and the density, q ¼ 2015 kg/m3.

The continuity coefficients from Eqs. (27), (29) and (30):

kð1Þ
1 ¼ �kð3Þ

1 ¼ 0:2210501411; kð2Þ
1 ¼ 0

Problem 1. Bending of a simply supported beam under distributed sinusoidal load.

The surface and volume force components are cancelled except:

�nn3 ¼
Z h

0

f3 dx3 ¼ q ¼ q0 sin
px1
L

� 

For the simply supported boundary conditions, the Levy solution is used, define as;

u01 ¼ u0 cos
px1
L

� 

; w ¼ w0 sin

px1
L

� 

; /1 ¼ /0 cos

px1
L

� 

ð31Þ

Now the governing equations (22), with P �
ðaÞ ¼ 0, becomes
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0 ¼ A11u0�1;11 � B11w;111 þ eKK/1;11

0 ¼ B11u0�1;111 � D11w;1111 þ eTT /1;111 þ q0 sin
px1
L

� 

0 ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1

ð32Þ

Now, by the Levy solution, the governing equations become;

0 ¼ �A11a
2u0 cos ax1 þ B11a

3w0 cos ax1 � eKKa2/0 cos ax1

0 ¼ B11a
3u0 sin ax1 � D11a

4w0 sin ax1 þ eTT a3/0 sin ax1 þ q0 sin ax1

0 ¼ �eKKa2u0 cos ax1 þ eTT a3w0 cos ax1 � eSSa2/0 cos ax1 � eYY /0 cos ax1

with,

a ¼ p
L

and then in matrix form,

�a2A11 a3B11 �a2 eKK
a3B11 �a4D11 a3eTT
�a2 eKK a3eTT �a2eSS � eYY

24 35 u0
w0

/0

0@ 1A ¼
0

�q0
0

0@ 1A ð33Þ

and also, the displacement (1), becomes;

U1ðx1; x3Þ ¼ ðu0 � x3w0a þ h1ðx3Þ/0Þ cosðax1Þ
U2 ¼ 0

U3 ¼ w0 sinðax1Þ
ð34Þ

Table 1

Underlining of the membrane refinement introduces in the new model in relation to the Sine model, continuous model without re-

finement of Idlbi (Idlbi, 1995) and Abaqus (Karama et al., 1993)

x3 U1ðL=2; x3Þ (10�7 m)

Present Sine (Karama et al., 1993) Idlbi (Idlbi, 1995) Abaqus (Karama et al., 1993)

�h=2 )7.365 )7.192 )7.116 )8.093
�3h=8 )4.903 )4.812 )4.756 )5.446
�h=4 )3.068 )3.074 )3.081 )2.998
�h=8 )1.373 )1.404 )1.399 )1.195
0 0 0 0 0

h=8 1.373 1.404 1.399 1.195

h=4 3.068 3.074 3.081 2.998

3h=8 4.903 4.812 4.756 5.446

h=2 7.365 7.192 7.116 8.093

Table 2

Bending of the simply supported thick beam under distributed sinusoidal load

Model U3ðL=2Þ (m) U1ð0; h=2Þ (m) r13ðL=4; 0Þ (Pa) r11ðL=2;�h=4þÞ (Pa) r33ðL=2; h=2Þ (Pa)
Present �6:3701� 10�4 2:1196� 10�4 )940098.0 8112840.0 )1039990.0
Error (%) 4.4 8.3 6.6 3.5 3.9

Sine (Karama et al., 1993) �6:2794� 10�4 2:0180� 10�4 )896865.0 8158932.0 )1047274.0
Error (%) 2.9 12.7 10.8 4.1 4.6

Abaqus (Karama et al., 1993) �6:1006� 10�4 2:3125� 10�4 )1006000.0 7835200.0 )1000900.0
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and now by relation (20), stresses expression;

r11ðx1; x3Þ ¼ �aC0
11ðu0 � ax3w0 þ h1/0Þ sinðax1Þ ð35Þ

and,

r13ðx1; x3Þ ¼ C55h1;3/0 cosðax1Þ ð36Þ

and integration of the equilibrium equation r13;1 þ r33;3 ¼ 0, enables us to calculate the analytical value of

r33;

r33 ¼ aC55h1ðx3Þ/0 sinðax1Þ ð37Þ

The numerical results obtained (q0 ¼ �106 Pa) using the present model are compared with those obtained

by: the finite element analysis (Karama et al., 1993) and the Sine (Karama et al., 1993) model by Touratier
(1991). For this problem, the present model is better than Sine model as compared to the finite element

analysis results, except the transverse deflection ðU3Þ. Percentage error reduction is more significant in case

of transverse shear stress ðr13Þ (Tables 1 and 2).

The efficiency of this model is shown for (Figs. 2–4), different stresses and displacement plotted ac-

cording to the length and thickness of the beam, showing that the present model at every point on the beam,

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

0 L/4 L/2 3L/4 L
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Fig. 2. Variation of the stress r11 along the direction x1 for x3 ¼ �h=2 for Problem 1. Present (- � -), Sine (Karama et al., 1993) (–),

Abaqus (Karama et al., 1993) (- - -).
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Fig. 3. Variation of the stress r13 through the thickness for x1 ¼ 3L=8 for Problem 1. Present (- � -), Sine (Karama et al., 1993) (–),

Abaqus (Karama et al., 1993) (- - -).
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is closer to the finite element results then to those of the Sine model. Here we can see also the continuity of

displacement and transverse shear stress between layer interfaces of the present model.

Problem 2. Bending of a clamped free beam under distributed uniform load.

In this case the value of �nn3 is:

�nn3 ¼
Z h=2

�h=2
f3 dx3 ¼ q ð38Þ

Now, the governing equation from system of equations (22),

0 ¼ A11u0�1;11 � B11w;111 þ eKK/1;11

0 ¼ B11u0�1;111 � D11w;1111 þ eTT /1;111 þ q

0 ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1

ð39Þ

by integration and simultaneously solving the above equations, gives;

/1ðx1Þ ¼ C1e
�Px1 þ C2e

Px1 � ðqx1 þ C3Þ
eTTeYY D11

u01ðx1Þ ¼ �
eKK
A11

/1ðx1Þ þ C7x1 þ C8

wðx1Þ ¼
eTT

PD11

C1e
�Px1

�
þ C2e

Px1 � qx21
2

�
þ C3x1

�
PeYY
�
þ 1

D11

qx41
24

�
þ C3

x31
6

�
þ C4

x21
2
þ C5xþ C6

with

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eYY A11D11eKK 2D11 þ eTT 2A11 � eSSA11D11

s
ð40Þ

and ðB11 ¼ 0Þ due to the symmetry about mid-surface. Eight constant Ci are determined by the four natural
boundary conditions at the free edge deduced from (23) with P �

ðaÞ ¼ 0:
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Fig. 4. Variation of the displacement U1 through the thickness for x1 ¼ L=4 for Problem 1. Present (- � -), Sine (Karama et al., 1993) (–),

Abaqus (Karama et al., 1993) (- - -).
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0 ¼ A11u0�1;1ðLÞ � eKK/1;1ðLÞ
0 ¼ D11w;111ðLÞ � eTT/1;11ðLÞ
0 ¼ �eKKu0�1;1ðLÞ þ eTT w;11ðLÞ � eSS/1;1ðLÞ
0 ¼ �D11w;11ðLÞ þ eTT/1;1ðLÞ

and by the four kinematics boundary conditions at clamped edge:

u01ð0Þ ¼ 0; wð0Þ ¼ 0; w;1ð0Þ ¼ 0; /1ð0Þ ¼ 0

The numerical results (Table 3), obtained (q ¼ �1000 N/m) using the present model for the same beam as in

Problem 1, except for the load now being uniformly distributed instead of sinusoidal, show that the present

model still has less percentage of error as compared to the Sine model. In this case, the displacements are

closer to the numerical result given by Abaqus as compared to the Sine model. In (Figs. 5–7), different

stresses and displacement are plotted according to the length and thickness of the beam, showing the

difference between the present model and Sine model as regards the finite element. The present model is in

close agreement with the Abaqus results.

Problem 3. Bending of a clamped free beam under concentrated load.

In this case the value of N 3 is:

N 3 ¼
Z h=2

�h=2
F3 dx3 ¼ q ð41Þ

Table 3

Bending of a clamped/free thick beam under uniformly distributed load

Model U3ðLÞ (m) U1ðL=2; h=2Þ (m) r13ðL=4; 0Þ (Pa) r11ðL=2;�h=4þÞ
(Pa)

r33ðL=2; h=2Þ
(Pa)

Present �4:40057� 10�6 7:36497� 10�7 )3181.03 )9986.18 )1067.1
Error (%) 2.6 9.8 )2.3 7.9 )4.3
Sine (Karama et al., 1993) �4:37885� 10�6 7:19163� 10�7 )3031.42 )9939.3 )1066.64
Error (%) 3.1 11.9 2.5 8.3 )4.3
Abaqus (Karama et al., 1993) �4:51810� 10�6 8:16300� 10�7 )3110.0 )10842.0 )1023.0
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Fig. 5. Variation of the stress r33 along the direction x1 for x3 ¼ h=4þ for Problem 1. Present (- � -), Sine (Karama et al., 1993) (–),

Abaqus (Karama et al., 1993) (- - -).
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Now, the governing equation from the system of equations (22),

0 ¼ A11u0�1;11 � B11w;111 þ eKK/1;11

0 ¼ B11u0�1;111 � D11w;1111 þ eTT /1;111

0 ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1

ð42Þ

by integration and simultaneous solving of the above equations, gives;

/1ðx1Þ ¼ C1e
�Px1 þ C2e

Px1 � C3

eTTeYY D11

;

u01ðx1Þ ¼ �
eKK
A11

/1ðx1Þ þ C7x1 þ C8;

wðx1Þ ¼
eTT

PD11

C1e
�Px1

�
þ C2e

Px1 � C3x1
PeYY
�
þ C3

D11

x31
6
þ C4

x21
2
þ C5xþ C6
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Fig. 6. Variation of the stress r13 along the direction x1 for x3 ¼ 0 for Problem 2. Present (- � -), Sine (Karama et al., 1993) (–), Abaqus

(Karama et al., 1993) (- - -).
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Fig. 7. Variation of the stress r13 through the thickness for x1 ¼ L=2. for Problem 2. Present (- � -), Sine (Karama et al., 1993) (–),

Abaqus (Karama et al., 1993) (- - -).
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with

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�eYY A11D11eKK 2D11 þ eTT 2A11 � eSSA11D11

s
ð43Þ

and ðB11 ¼ 0Þ due to the symmetry about mid-surface. Eight constant Ci are determined by the four natural

boundary conditions at the free edge deduced from (23) with P �
ðaÞ ¼ 0:

0 ¼ A11u0�1;1ðLÞ � eKK/1;1ðLÞ
0 ¼ �D11w;111ðLÞ þ eTT/1;11ðLÞ � q

0 ¼ �eKKu0�1;1ðLÞ þ eTT w;11ðLÞ � eSS/1;1ðLÞ
0 ¼ �D11w;11ðLÞ þ eTT/1;1ðLÞ

and by the four kinematics boundary conditions at the clamped edge:

u01ð0Þ ¼ 0; wð0Þ ¼ 0; w;1ð0Þ ¼ 0; /1ð0Þ ¼ 0

The numerical results (Table 4), obtained (q ¼ �10,000 N) using the present model for the same beam as in

Problem 2 except that loading is now concentrated at the free end of the beam, our reference still being the
Abaqus results (Karama et al., 1993), show that the present model still has very good results compared to

the Sine model except with regard to membrane stress (r11) where no difference was found.

3.2. Buckling analysis

The analysis of the buckling behaviour underlines a succession of the stable equilibrium configurations

in a plane stress state. This fundamental equilibrium trajectory is followed by the structure from the

loading. Then there is a critical point where the equilibrium losses its stability; this is the buckling critical
load (Gachon, 1980) and (Palardy and Palazotto, 1990).

Problem 4. Buckling of a simply supported thin beam.

The buckling is a non-linear static problem with large displacements. The e11 strain is composed of a

linear part and a non-linear part (Widera and Logan, 1980): e11 ¼ U1;1 þ ð1=2Þðw;1Þ2.
The non-linear term modifies the value of the virtual power of the internal work as follows:

P �
ðiÞ ¼ P �L

ðiÞ þ P �NL
ðiÞ

P �
ðiÞ ¼ �

Z
X

r11w;11w� dX ¼
Z L

0

N 0
11w;11w� dx1 � N 0

11w;1w�
ð44Þ

Table 4

Bending of a clamped/free thick beam under concentrated load

Model U3ðLÞ (m) U1ðL=2; h=2Þ (m) r13ðL=4; 0Þ (Pa) r11ðL=2;�h=4þÞ (Pa)
Present �1:67021� 10�5 2:87160� 10�6 )6699.43 )62969.5
Error (%) 0.1 8.8 4.7 )1.4
Sine (Karama et al., 1993) �1:65722� 10�5 2:81698� 10�6 )6372.07 )62969.5
Error (%) 0.8 10.5 9.3 )1.4
Abaqus (Karama et al., 1993) �1:67110� 10�5 3:14800� 10�6 )7027.0 )62091.0
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with

N 0
11 ¼

Z h=2

�h=2
r0
11 dx3 ¼ compression load

The equilibriums in Eqs. (22) are modified by the non-linear terms:

0 ¼ A11u0�1;11 � B11w;111 þ eKK/1;11

0 ¼ B11u0�1;111 � D11w;1111 þ eTT /1;111 þ N 0
11w;11

0 ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1

ð45Þ

The Levy type solution supposes u01, w and /1 as follows:

u01 ¼ Un coswnx1; w ¼ Wn sinwnx1; /1 ¼ /n coswnx1;

with

wn ¼
np
L

� 

where n is an integer. To determine the critical buckling load, the value of N 0

11 found has to cancel the

determinant of the system (45). By changing the n, for the different buckling modes, the different critical

loads can be obtained, giving;

N 0
11C ¼ �N 0

11 ¼ w2
n D11

"
� w2

nð2eKKB11
eTT � A11

eTT 2 � B2
11
eSSÞ � B2

11
eYY

w2
nðeKK 2 � A11

eSSÞ � A11
eYY

#
ð46Þ

In (Table 5), the critical buckling load is calculated for different modes of buckling using the present model.
Until six mode of buckling, there is no difference has found between present and Sine model as compare to

numerical results by Abaqus (Karama et al., 1993). After sixth mode of buckling, results by both models

diverge progressively with same percentage of error.

3.3. Free vibration analysis

The dynamic analysis is realised in the free vibration case. All the terms of the motion equation (22) are

taken into account. Two studies in free vibration, with and without initial load are developed. In each

problem this concerns simply supported thick and thin beams. The surface and volume components are
cancelled in two studies.

Table 5

Critical loads for the buckling of a simply supported thin beam for the first six modes

N N 0
11C (N)––Present Error (%) N 0

11C (N)––Sine

(Karama et al., 1993)

Error (%) N 0
11C (N)––Abaqus

(Karama et al., 1993)

1 20362279.35 0.09 20362280.0 0.09 20381400.0

2 76428157.72 )0.03 76428160.0 )0.03 76407200.0

3 155963320.2 0.56 155963320.0 0.56 156844000.0

4 245376869.5 2.17 245376870.0 2.17 250822000.0

5 334136061.5 4.69 334136060.0 4.69 350573000.0

6 416057469.7 7.80 416057470.0 7.80 451275000.0
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Problem 5. Free vibration without an initial load.

The equation system is deduced from equations of motions (22):

CðuÞ ¼ A11u0�1;11 � B11w;111 þ eKK/1;11

CðwÞ ¼ B11u0�1;111 � D11w;1111 þ eTT/1;111

Cð/Þ ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1

ð47Þ

The Levy type solution supposes:

u01 ¼ Un cos wnx1ð Þ expðixtÞ
w ¼ Wn sin wnx1ð Þ expðixtÞ
/1 ¼ Un cos wnx1ð Þ expðixtÞ

ð48Þ

with wn ¼ np=L, n is an integer for the number of mode.

To determine the vibration frequency, the determinant of the system of equation (47) equals zero:

Iwx2 � w2
nA11 Iuw0wnx

2 þ w3
nB11 Iuxx2 � w2

n
eKK

Iuw0w2
nx

2 þ w3
nB11 Iwx2 þ Iw0w2

nx
2 � w4

nD11 Ixw0wnx
2 þ w3

n
eTT

Iuxx2 � w2
n
eKK Ixw0wnx

2 þ w3
n
eTT Ixx2 � w2

n
eSS � eYY

264
375 Un

Wn

Un

0@ 1A ¼ 0 ð49Þ

So, now for different values of n, different equation are obtained, in which the smallest positive root gives

the vibration frequency of associated mode n.
In (Tables 6 and 7), results are presented for the free vibration of thin and thick beams respectively. For

different modes of vibration, frequencies are calculated using the present model. In the case of the thin

beam, frequencies are found to be very close to Abaqus, as far as the 10th mode of vibration, compared to

the Sine model, but after the 10th mode, results diverge compared to the Sine model. However there is no

big difference of error between the two models, the maximum error obtained with the present model is less

than 0.9%, and 1.5% with the Sine model as far as the 12th mode of vibration.

In the case of the thick beam, the results are more or less unfavourable with the present model compared

to the Sine model. However, frequencies diverge very rapidly after the 5th mode compare to the Sine model.

Table 6

Free vibration without an initial load

Mode n Present x (Hz) Error (%) Sine (Karama et al.,

1993) x (Hz)

Error (%) Abaqus (Karama et al.,

1993) x (Hz)

1 14.958 0.06 14.96 0.09 14.95

2 57.796 0.34 57.866 0.46 57.60

3 123.396 0.49 123.696 0.73 122.80

4 205.647 0.71 206.419 1.09 204.20

5 299.105 0.84 300.593 1.35 296.60

6 399.659 0.87 402.062 1.48 396.20

7 504.518 0.78 507.956 1.47 500.60

8 611.909 0.59 616.420 1.33 608.30

9 720.773 0.32 726.316 1.09 718.50

10 830.501 )0.02 836.978 0.76 830.70

11 940.779 )0.39 948.037 0.37 944.50

12 1051.465 )0.81 1059.307 )0.07 1060.0

Vibration frequencies for a thin beam for the first 12 modes.
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Problem 6. Free vibration with an initial load.

An initial load is added to study the influence of this initial constraint on the free vibration of Problem 5.

This load has the same direction as the buckling study, but its value is lower than the first critical load. In

this analytical resolution, the non-linear term defined in the buckling study is taken into account.

The system of equations deduced from the motion of equations (22):

CðuÞ ¼ A11u0�1;11 � B11w;111 þ eKK/1;11

CðwÞ ¼ B11u0�1;111 � D11w;1111 þ eTT/1;111 þ N 0
11w;11

Cð/Þ ¼ eKKu0�1;11 � eTT w;111 þ eSS/1;11 � eYY /1

ð50Þ

To determine the vibration frequency, using the Levy type solution equation (48), the determinant of the

system of equation (50) is equal to zero:

Iwx2 � w2
nA11 Iuw0wnx

2 þ w3
nB11 Iuxx2 � w2

n
eKK

Iuw0w2
nx

2 þ w3
nB11 Iwx2 þ Iw0w2

nx
2 � w4

nD11 � N 0
11w

2
n Ixw0wnx

2 þ w3
n
eTT

Iuxx2 � w2
n
eKK Ixw0wnx

2 þ w3
n
eTT Ixx2 � w2

n
eSS � eYY

264
375 Un

Wn

Un

0@ 1A ¼ 0 ð51Þ

Table 7

Free vibration without an initial load

Mode n Present x (Hz) Error (%) Sine (Karama et al.,

1993) x (Hz)

Error (%) Abaqus (Karama et al.,

1993) x (Hz)

1 83.050 0.18 83.698 )0.96 82.90

2 195.501 )2.54 195.730 2.43 200.60

3 317.232 )2.18 313.402 3.36 324.30

4 453.926 0.85 441.776 1.85 450.10

5 608.250 5.53 583.718 )1.27 576.40

6 780.830 11.10 740.575 )5.37 702.80

7 970.985 17.11 912.647 )10.08 829.10

8 1177.229 23.21 1099.501 )15.07 955.50

Vibration frequencies for a thick beam for the first 12 modes.

Table 8

Free vibration with an initial load

Mode n Present x (Hz) Error (%) Sine (Karama et al.,

1993) x (Hz)

Error (%) Abaqus (Karama et al.,

1993) x (Hz)

1 10.67 )0.12 10.67 )0.05 10.68

2 53.87 0.19 53.95 0.33 53.77

3 119.35 0.42 119.67 0.68 118.86

4 201.38 0.60 202.17 0.99 200.19

5 294.55 0.70 296.06 1.21 292.51

6 394.77 0.69 397.20 1.31 392.06

7 499.26 0.58 502.73 1.28 496.39

8 606.26 0.31 610.80 1.06 604.39

9 714.70 0.08 720.29 0.87 714.10

10 824.01 )0.26 830.53 0.53 826.16

11 933.84 )0.65 941.15 0.13 939.95

12 1044.09 )1.06 1051.97 )0.32 1055.30

Vibration frequencies for a thin beam for the first 12 modes.
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So, now, for different values of n, different equations are obtained, in which the smallest positive root gives

the vibration frequency of the associated mode n.
In the (Table 8), results are presented for the free vibration with an initial load ()107 N). For different

modes of vibration, the frequencies are calculated using the present model. In the case of the thin beam, the
maximum error found less than 0.75% with the present model, and 1.35% with the Sine model as far as the

11th mode of vibration, but after the 11th mode of vibration, the results are unfavourable with the present

model.

4. Conclusion

The new multi-layered structure exponential model satisfies exactly and automatically the continuity

condition of displacements and transverse shear stresses at interfaces, as well as the boundary conditions

for a laminated composite with the help of the Heaviside step function (Figs. 1–7). For the new proposed

model the results are compared with the existing model (Karama et al., 1993) like Sine model proposed by

Touratier (1991) and by the finite element method by (Abaqus) (Karama et al., 1993). Results show that the

new proposed exponential model is more precise or closer to finite element results than the Sine (Karama
et al., 1993) model except for some results (Tables 1–8).

The new model is also simple in so far as any correction factor is used in opposition to the higher order

models. The innovation in relation to the model proposed in the bibliography is also the introduction of the

membrane refinement function gðx3Þ, which represents the counterpart of the transverse shear function

f ðx3Þ, which allows the x3 to improve membrane refinement and then warping of the straight section in

bending deformations (Table 1).

In the case of static analysis, (Tables 2–4) presents the numerical results for the bending deformation

under different types of loading and boundary conditions on a thick beam, showing that the present model
is much closer to the finite element analysis by Abaqus (Karama et al., 1993) than the Sine model (Karama

et al., 1993). In (Figs. 1–8), different stresses and displacements are plotted with respect to the thickness and

length for bending deformation, showing that the present model is still trying to approach the finite element

results (Karama et al., 1993) much closely than the Sine model (Karama et al., 1993).

In the dynamic analysis, numerical results are more or less are favourable with the Abaqus reference.

As a whole we can conclude the present exponential model is more precise than other existing analytical

models for multi-layered structures compared to finite element analysis.
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Fig. 8. Variation of the displacement U1 through the thickness for x1 ¼ L=4 for Problem 2. Present (- � -), Sine (Karama et al., 1993) (–),

Abaqus (Karama et al., 1993) (- - -).
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Appendix A. Virtual power of the acceleration quantities

We have,

€UU1 ¼ €uu01 � x3€ww;1 þ h1 €//1; €UU3 ¼ €ww and U �
1 ¼ u0�1 � x3w�

;1 þ h1/
�
1; U �

3 ¼ w� ðA:1Þ

So Eq. (6) becomes,

P �
ðaÞ ¼

Z
X

qðU �
1
€UU1 þ U �

3
€UU3ÞdX ðA:2Þ

By the integration by parts:

P �
ðaÞ ¼

Z
X

q½u0�1 €uu1 þ ð€uu3 þ x3€uu1;1Þw� þ h1ðx3Þ/�
1€uu1�dX �

Z
C

qx3w�€uu1 dC ðA:3Þ

and, now:

P �
ðaÞ ¼

Z
X

q €uu01
�h

� x3€ww;1 þ h1ðx3Þ €//1



u0�1 þ €ww

�
þ x3ð€uu01;1 � x3€ww;11 þ h1ðx3Þ €//1;1Þ



w�

þ h1ðx3Þ €uu01
�

� x3€ww;1 þ h1ðx3Þ €//1



/�

1

i
dX �

Z
C

qx3 €uu01
�

� x3€ww;1 þ h1ðx3Þ €//1



w� dC ðA:4Þ

P �
ðaÞ ¼

Z L

0

Z h=2

�h=2
qdx3Þ€uu01

 "
þ
Z h=2

�h=2
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!
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þ
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�h=2
qdx3Þ€ww

 
þ
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�h=2
ðqx3 dx3Þ€uu01;1 �

Z h=2

�h=2
ðqx23 dx3Þ€ww;11 þ
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ðqx3h1ðx3Þdx3Þ €//1;1

!
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þ
Z h=2

�h=2
ðqh1ðx3Þdx3Þ€uu01

 
þ
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�h=2
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Z h=2

�h=2
ðqh21ðx3Þdx3Þ €//1

!
/�

1

#
dX

þ
Z h=2

�h=2
ð

 "
� qx3 dx3Þ€uu01 þ

Z h=2

�h=2
ðqx23 dx3Þ€ww;1 þ

Z h=2

�h=2
ð � qx3h1ðx3Þdx3Þ €//1

!
w�

#
ðA:5Þ

and now by relations (7),

P �
ðaÞ ¼

Z L

0

CðuÞu0�1
)

þ CðwÞw� þ Cð/Þ/�
1

*
dx1 þ �CCðwÞw� ðA:6Þ

Appendix B. Virtual power of the internal work

By relation (11), virtual power of the internal work (10) become:

P �
ðiÞ ¼ �

Z
X

u0�1;1
��

� x3w�
;11 þ h1ðx3Þ/�

1;1



r11 þ 2

1

2
h1;3ðx3Þ/�

1

� �
r13

�
dX ðB:1Þ

P �
ðiÞ ¼ �

Z
X

r11u0�1;1
�

� x3w�
;11r11 þ h1ðx3Þr11/

�
1;1 þ r13h1;3ðx3Þ/�

1



dX ðB:2Þ
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Now, by integrating each term by parts;

P �
ðiÞ ¼ �

Z
X

+
� r11;1u0�1 � x3r11;11w� � h1ðx3Þr11;1/
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Now by relations (12),

P �
ðiÞ ¼

Z L

0
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Appendix C. Virtual power of the external loading

By relations (15), virtual power of external loading (14), becomes;

P �
ðeÞ ¼

Z
X
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and now by relation (15),

P �
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Z L

0
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