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Abstract

This work presents a new multi-layer laminated composite structure model to predict the mechanical behaviour of
multi-layered laminated composite structures. As a case study, the mechanical behaviour of laminated composite beam
(90°/0°/0°/90°) is examined from both a static and dynamic point of view. The results are compared with the model
“Sinus” and finite element method studied by Abou Harb. Results show that this new model is more precise than older
ones as compared to the results by the finite element method (Abaqus). To introduce continuity on the interfaces of
each layer, the kinematics defined by Ossadzow was used. The equilibrium equations and natural boundary conditions
are derived by the principle of virtual power. To validate the new proposed model, different cases in bending, buckling
and free vibration have been considered.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Now composite materials are used in nearly all phases of structure work, from space craft to marine
vessels, from bridges and domes on civic buildings to sporting goods. The significant increase in the use of
composite materials structure calls for the development of rigorous mathematical methods capable of
modelling, designing and optimising of the composite under any given set of conditions.

One of the major challenges in computational structural mechanics is the development of the advanced
models and numerical techniques in order to provide efficient tools exhibiting good interior and edge so-
lutions.

In this paper we are introducing an “exponential function” as a shear stress function; the exponential
functions are found to be very much richer than trigonometric Sine and Cosine functions in their Fourier
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Nomenclature

h beam thickness or height
h transverse shear function
H Heaviside step function
L beam length

m layer number

P* virtual power

u, membrane displacement

U differentiation w.r.t. time = 0*U /0¢*
Ui, differentiation w.r.t. x; = 0U; /0x,
U* virtual speed

w transverse displacement

Greeks

v, ¢,  transverse shear rotation

€ strain

o stress

development series. According to the definition of the transverse shear stress function, the existing lami-
nated composite beam is divided into two broad categories; firstly, the global approximation models and
secondly the discrete layer approximation models. The equivalent single-layer laminate theories are those in
which a heterogeneous laminated plate is treated as a statically equivalent, single layer having a complex
constitutive behaviour, reducing the 3D continuum problem to 2D problem.

The equivalent single layer models are:

e Kirchhoff (1850) and Love (1934) present their theory (or classical theory) in which deformation due to
transverse shear is neglected, implies that the normal to the mid-plane remains straight and normal at
mid-surface after deformation. This theory can be used for thin beams;

e Reissner (1945) and Mindlin (1951) present their theory (or first order theory). That the first order de-
formation theory extends the kinematics of the classical laminated plate theory by including a gross
transverse shear deformation in its kinematic assumption, the transverse shear strain remain constant
with respect to the thickness coordinate, implies that the normal to the mid-plane remains straight
but not normal to mid-surface after deformation due to shear effect. The first order theory requires shear
correction factors, which are difficult to determine for arbitrary laminated composite plate;

¢ and the higher order models are based on the hypothesis of non-linear stress variation through thickness
(Reddy, 1984; Touratier, 1991). These models are able to represent the section warping in the deformed
configuration.

However, these theories do not satisfy the continuity conditions of transverse shear stress at layer in-
terfaces. Although the discrete layer approximation theories are accurate, but they are rather complex in
solving problems because the order of their governing equations depends on the number of layers.

Di Sciuva (1987, 1993) and then Touratier (1991, 1992) proposed simplified discrete layer model with
only five variational unknowns (two membrane displacements, a transverse displacement and two rota-
tions), allowing the section to be represented wrapping in the deformed configuration for the Touratier
(1992) model. Nevertheless, in these two cases the compatibility conditions, both layer interfaces and the
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boundaries, cannot be satisfied. From Touratier’s work, (Beakou, 1991) and (Idlbi, 1995) proposed, res-
pectively, shell and plate models which satisfy both the stress continuity at interfaces and the zero stress
conditions at the boundaries.

Finally, He (1994) introduced the Heaviside step function which enables automatic satisfaction of the
displacement continuity at interfaces between different layers. The new discrete layer model presented
comes from the work of Di Sciuva (1993), He (1994) and Ossadzow et al. (1995), the displacement field is:

Uy (x1,x3, 1) = ul(x1, 1) — x3w 1 (x1,8) + hy (x3) @y (x1,2)
U, =0 (1)
Us(x1,t) = w(xi, t)

with transverse shear function:

e =)+ 47 | 52+ L5 (o= = ) @

m=1

where, H (x; — x!"), the Heaviside Step function is defined as:

(m)
(m) 1 for x3 = x3
H(x; —x37) = 3
(s =" {O forx3<x(3m) ®)

and f(x3) is the shear refinement function, and g(x3) is the membrane refinement function, and the A" are
coefficients of the continuity.

New multi-layered laminated composite structures model (“KAM”):

In this work a new multi-layered laminated composite structure model is presented by using exponential
function as:

— a2/
Z) = zC€
1 : @
g(z) = —ze2CM
for a multi-layered beam €, of uniform thickness ‘4’ and @ is referred to the co-ordinate system
R = (0/xy,x5,x3 = z) with z being normal to the plate’s mid-surface X, I' is the frontier of Q. Then, the

domain Q is such that:

QCR, Q:{Zx{ hh}; Z

h
—E,E ——<Z<§/M(X17XQ,Z) S Q,Mo(xl,XQ,O) S Z,(]s > Max(z)}

where ¢ is the diameter of the Q. and the closed domain @ is set such that:
Q={QUI/T =g UT—ssp}

From the beginning our objective was so clear, to find out a transverse shear stress function f(z), which
gives the mechanical behaviour of the composite laminated structures as much close as possible to the exact
3D solution by Pagano (1970) or finite element analysis in 2D (stress, strain plane), and better represen-
tation of the transverse shear stress in the thickness of the laminated structure. Since different higher order
polynomial and trigonometric function already has been tried which are as follow;

Ambartsumian (1958) where;

ra-3%-5]
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Kaczkowski (1968), Panc (1975) and Reissner (1975) where;
5 472
/@) —12{1 _W}

Levinson (1980), Murthy (1981) and Reddy (1984) where;
47
flz)=z [1 - 3112}

and finally Touratier (1991), where;

h . (mz
f(z)_nsm(h)
So, we took a start with an exponential function, because an exponential function has all even and odd
power in its expansion unlike Sine function, which have only odd power. So an exponential function is
much richer than a Sine function. If we take a look on the expansions of different transverse shear stress
functions as;

Reddy (1984):

47 z3

Touratier (1991):

h . /nz z z z z
f(z) == sin (7) = 2= 1645 15 + 08125 — 0.191 -+ 0.0261
Present model:
5 7 9

3
flz)= e 2 = 2% 4%

z z
52— 113335+ 0.666

As it is clear from expansions of the transverse shear stress functions, that the coefficient of successive terms
in ‘Sine’ functions are decreasing more rapidly than present exponential function which are the main res-
ponsible to gives different mechanical behaviour of laminated structures.

For the transverse shear stress behaviour, it is very important that the first derivative of the transverse
shear stress function must give a parabolic response in the thickness direction of the laminate and satisfy the
boundary conditions.

2. Governing equations

From the virtual power principle, the equations of motion and the natural boundary conditions can be
obtained. The calculations are made in small perturbations. According to the principle of virtual power:

Py = Py + By (5)

But the virtual power of the acceleration quantities are:

Py = /Q pUTTdQ (6)
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we suppose:
B2 h)2
I, = / de3> Ly = 7/ pPX3 dJC3
—h/2 —h/2
hy2 B2
Ly :/ px3dxs, I, =/ phi (x3) dxs
—n)2 —h)2
h/2 h/2
1L, :/ phi(x3)dxs, Ly = —/ px3h (x3) dxs
—h)2 —h/2

so, Eq. (6) becomes (see Appendix A for the mathematical detail):

L
P{;) :/ (I"(u)u(l)* _|_F(W)W* +F(¢)¢T)dxl +T<W)W*
0

IO = [ + Loty + Lod,

I = Lyl | + b — Loy — Lw
T = Lol + Loibs + Lodb,

T — il 4 Ly + Loy @,

Now the virtual power of internal work is:

—xT —
P(*i) = / D :5dQ
Q

but,
_ |Du D D\ |ou onn o
D=|Dy Dy Dy|, T=|0y 0p 0n
D31 D3y Ds3 031 03 03

so, in two dimension:
D:G =Dy 011 + 2Di3013
Resulting stresses Nz, M,z and P, are defined as;

B2 2
N11=/ ondxs, My Z/ x3071; dx3

12 12
h/2 hy2
Py Z/ hi(x3)ondxs, P :/ hi3(x3)013dxs
—hJ2 —h/2

so Eq. (10) becomes (see Appendix B for the mathematical detail),
L
Py = / (Niau)” + My aw” + (P — Pis)y) dxy — Nypul™ — My ow'™ + Myw', — Py
0
Now the virtual power of external loading is;

o «T T | L
P<e)f/QU ~fdQ+/FU CBdr

1529

(11)

(12)

(13)

(14)
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but,
N F
U*T:[Ul* 0 U;L f: f2 , F= |k
f3 B
with,
U = ul" —xaw'y + hi(x3) )
U; =0
Uy =w"
we define;
h/2 o h/2
ﬁi:/ f;-dx:;, Nl:/ de}
—h/)2 —h/2
h/2 o h/2
m; :/ x3f;dxs, M[:/ x3F; dxs (15)
—h/2 —h/2
h/2 . h/2
ﬁi = hl(X3)ﬁdX3, P,‘ = hl(XB)de3
—h/2 —h/2

so Eq. (14) becomes (see Appendix C for the mathematical detail),
L
P(*e) = -/0 (ﬁlu?* + (fl3 + fhlyl)w* +131(]5T)dx1 +N1u?*(ﬁ3 — th)W* _MIW,*I +F1¢)T (16)
Now, by Egs. (5), (8), (13) and (16), governing equations and natural boundary conditions for Vu*, Vw*,

Vi

re = Ny +ny

'™ = My + (a3 + my ) (17)

re = P — P +p

And natural boundary conditions for Vul*, Yw*, Vé], Vw":

0=—Niu+N,
T(w’) — —M11A1 —|—(N3—ﬁ’l]) (18)
0=—-P +P
0 - M“ - Ml
The three-dimensional orthotropic constitutive law is:
11 Chi Cp Cs O 0 0 én
022 Co Cn Cn 0 0 0 &
o3| _|Cs Cs G 0 0 0 €33 (19)
023 0 0 0 C44 0 0 2823
013 0 0 0 0 C55 0 2813
g12 0 0 0 0 0 C66 2812

The dimension x, is supposed unitary, and the effects of the ¢33 are neglected, so orthotropic law (19),
becomes;
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{a”} [ ! O}{gn}
g13 0 C55 2813
with,

CiiCs3 — C123

0%
e =Uig =uy —x3wu + higy g, C
’ 33

2e3y = hi3¢, and Cj =

Now, the generalized constitutive law;

Nll A11 Bll IS 0 M?*l
My | _|By Dn T 0] |—-wn
Pu| | K T S 0] ¢us
P; 0 0 0 Y ¢,

so, the governing equations (17), become:

r' = Apulyy — Buwan + Koy +
r™ = Bllu?,*m —Duw i + T¢1,111 + 713 +my
re = Izu?f“ - TW,m + §¢1,11 - }~7¢1 + D

and the natural boundary conditions (18), become:
0 :Allu?fl — Biiw *E(f’l,l +N,
™ = —Bnu?fn +Duw 1 — Tﬁbl,n + Ny —m
0= —I?u?fl + FTW,“ — E(,bl'l + P,
0= _Bllu(l)ﬁ —Dyw + f¢1,1 - M,

Continuity coefficients (1): To find out the value of the continuity coefficients, the conditions

continuity of the transverse shear stress between each interfaces of the layers were used (Fig. 1);
m m m+1 m
0<13><x3 = x<3 >> = 0(13+ )<X3 :x; )>

Interface of layer (1) and layer (2):

1 1 2 1
o0 (35 =07 = o2 (53 =)

X3
h/2
4(90°) i
N 3(0) .
2O -h/4 1
1(90°) i

| L |

Fig. 1. Description of the beam.
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_ 7 (1)
ogttn [ 0+ 274200 (ST

= Q%) | (") + (A 4+ 2P 4+ A -1, ) I 25
=Q0u0(x1)|gx)+ (A7 + A7 +47) 2_|_ 5 + 4 (25)

Interface of layer (2) and layer (3):
6(123) <x3 = xff)) = 0’(13; (x3 = x(32)>

Since, Oss of the second and third layer are equal (Fig. 1), so,

0% 60) | (@) + (A + 2 4 4O -1 ) o
s 1g(x3)+(v1+1—|—/ul)2+ 5 + 4

()

, -1
= 00(x) [g’(xé”) + () A+ A7) (2 +‘2> + 47+ 47 (26)

Now by Egs. (25) and (26),
igl) _ /1(11) n igz)

(27)
=0

This shows that if the mechanical characteristics of the two consecutive layers are the same (Fig. 1), the
coefficient of the continuity will be zero (A = 0).
Interface of layer (3) and layer (4):

3 3 4 3
o1y (13 = x") = o1y (1 = )

: INCINSTINSTENTENY (e S ALC: 10 B WSTU RN
Oss¢(x1) |8/ (x37) + (4 + 47 +47) | o+ A A

2 2
" ') CCIT N = At M) 4@, 40
:Q55¢(xl) g(x3 )‘*‘(}n +)»1 + 4 ) 7 b +j'1 +/11 +)»1 (28)
we have,
f8 =—n/4) = =n/4) and ¢ = —n/4) =g () =h/4)
So, by Egs. (26)-(28), gives;
1 7(,(3)
05 () [g’(x?)) + () + 47+ ) <7 +f—(§3 )ﬂ
4 3 CCIT N S A M, 50
= 0ssp(x1) | g (x37) + (A4 + 47 +47) 7+ 5 + 47+ A4
0=2"4 2%
1 1 (29)

AV =



M. Karama et al. | International Journal of Solids and Structures 40 (2003) 1525-1546 1533

So, by Egs. (27) and (29), Eq. (25) becomes;
7 (1) 2 1Yo (1)
e 1 1 n (05— 0%)g' () 3 (05— 0s55)g'(x3)
Qés(g (xg ))) _ Qés(g’(xg )) +)v(1 ))’ )“(1 ) _ \¥ss 525 3 and /15 ) _ \¥ss 525 3
55 055
Finite element analysis: Since no exact 3D solution exists for the considered case study, so ABAQUS
(finite element analysis software) is used to show the efficiency of the present model. In this paper finite
element results are taken as a reference for the comparison of different models of laminated composite
structures, done by Karama et al. (1993, 1998). The 3D approximation of the behaviour is carried out by
element type “CPS8” (quadrilateral element of eight node, 16 ddl per element). To validate the finite ele-
ment results, firstly it is necessary to find out the convergence of laminate meshing. So, for the given

problem, in static and dynamic, the convergence found to be at 1680 elements included 24 element in
thickness.

(30)

3. Some evaluations of the present model
3.1. Bending analysis

The static bending analysis is studied, so the virtual power of acceleration quantities are cancelled. Three
different bending analyses have been developed for three different specific boundary conditions. For the
simply supported conditions, the unknown variables are deduced directly by the equation of motions. For
clamped conditions, kinematic boundary conditions are used and, finally, in a free edge case, natural
boundary conditions are employed.

The beam studied has a length of L = 6.35 m, a unitary width, and a thickness # = 2.794 m in the thick
case and 2 = 0.2794 m in the thin case. The beam possesses four layers of the same thickness at 90°/0°/0°/
90°. The material used for the four layers is boron epoxy. The mechanical properties of the 0° layer are as
follows (Widera and Logan, 1980):

E11 =241.5 GPa E22 = E33 = 18.89 GPa G23 = 3.45 GPa G12 = G13 = 5.18 GPa
Vo3 = 0.25 Vip = Vi3 = 0.24

and the density, p = 2015 kg/m?.
The continuity coefficients from Egs. (27), (29) and (30):

AV =% = 02210501411, 1P =0

Problem 1. Bending of a simply supported beam under distributed sinusoidal load.

The surface and volume force components are cancelled except:

h

_ . [ TX

n3:/ f3dx3:q:q0s1n<fl)
0

For the simply supported boundary conditions, the Levy solution is used, define as;

X1

u) = ug cos <T)’ w:wosin(%), d)l:q’)ocos(%) (31)

Now the governing equations (22), with P, =0, becomes
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0 =Ayul’y — Bywn + Koy
0= Bllu(l),*lll —Duwun + Td)l,lll + go sin (%)
0= 1~<”(1),*11 —Twin+8¢,,, — Yo,

Now, by the Levy solution, the governing equations become;
0 = —A0%ug cos ox; + Byjowy cos ox; — I~<oc2¢>0 COS x|

0 :B11a3u0 sin X —D110€4W0 Sil’lOOCl + TOC3¢0 Sil’lOOCl +q0 sinocxl

0 = —Kougcos ax; + Todwycosox; — Sa’dycosax; — ¥ b, cos ox
with,
LT
L
and then in matrix form,
—OCZAH O€3Bll —O(i[? Up 0
OC’;BLL —064911 OCiT B Wo = —qo
—o’K T  —a*S—Y | \ ¢ 0

and also, the displacement (1), becomes;

U1 (Xl,X3) = (uo — X3Woll —+ hl()C3)4)0) COS(OOC[)
U, =0

U3 = Wy sin(oocl)

Table 1

Underlining of the membrane refinement introduces in the new model in relation to the Sine model, continuous model without re-

finement of Idlbi (Idlbi, 1995) and Abaqus (Karama et al., 1993)

X3 U, (L/2,X3) (1077 m)
Present Sine (Karama et al., 1993) 1dlbi (Idlbi, 1995) Abaqus (Karama et al., 1993)
—h/2 —-7.365 -7.192 -7.116 —-8.093
—3n/8 —4.903 —4.812 —4.756 —5.446
—h/4 -3.068 -3.074 -3.081 -2.998
—h/8 -1.373 —-1.404 -1.399 —-1.195
0 0 0 0 0
h/8 1.373 1.404 1.399 1.195
h/4 3.068 3.074 3.081 2.998
3n/8 4.903 4.812 4.756 5.446
h/2 7.365 7.192 7.116 8.093
Table 2
Bending of the simply supported thick beam under distributed sinusoidal load
Model Us(L/2) (m) Ui (0,h/2) (m)  o13(L/4,0) (Pa) o1, (L/2,—h/4%) (Pa) 033(L/2,h/2) (Pa)
Present —6.3701 x 10~*  2.1196 x 10~* —940098.0 8112840.0 —-1039990.0
Error (%) 44 8.3 6.6 35 3.9
Sine (Karama et al., 1993) —6.2794 x 1074 2.0180 x 10~* —896865.0 8158932.0 —1047274.0
Error (%) 2.9 12.7 10.8 4.1 4.6
Abaqus (Karama et al., 1993) —6.1006 x 10~ 2.3125 x 10~* —-1006000.0 7835200.0 —1000900.0
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and now by relation (20), stresses expression;

611(X1,)C3) = 7O!C;1(u0 70&X3W0+h1(]§0) sin(ocxl) (35)
and,

613(X1 ,X3) = C55h13¢)0 COS(OOC]) (36)
and integration of the equilibrium equation o3, + g333 = 0, enables us to calculate the analytical value of
033;

033 = OCC55h1 (X3)¢)0 sin(ocxl) (37)
The numerical results obtained (g, = —10° Pa) using the present model are compared with those obtained
by: the finite element analysis (Karama et al., 1993) and the Sine (Karama et al., 1993) model by Touratier
(1991). For this problem, the present model is better than Sine model as compared to the finite element
analysis results, except the transverse deflection (Us). Percentage error reduction is more significant in case
of transverse shear stress (o3) (Tables 1 and 2).

The efficiency of this model is shown for (Figs. 2-4), different stresses and displacement plotted ac-
cording to the length and thickness of the beam, showing that the present model at every point on the beam,

2.50E+06

2.00E+06 +

1.50E+06 +

1.00E+06 -

5.00E+05 +

0.00E+00 f 1 1
0 L4 L2 3LA L

Fig. 2. Variation of the stress oy, along the direction x; for x; = —4/2 for Problem 1. Present (-x-), Sine (Karama et al., 1993) (-),
Abaqus (Karama et al., 1993) (---).

-h/2 -3h/8 -h/4 -b/8 0 W8 h/4 3h/8 h2

0 | | | | | | |
T T T T T T T

-100000 +

-200000 +

13

o~ -300000
-400000 T

-500000 T

-600000

Fig. 3. Variation of the stress o3 through the thickness for x; = 3L/8 for Problem 1. Present (- x-), Sine (Karama et al., 1993) (-),
Abaqus (Karama et al., 1993) (---).
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0.0002
0.00015
0.0001 ~
0.00005

=) 0
-0.000057
-0.0001 ~

h/8 h/4 3h/8 N2

Fig. 4. Variation of the displacement U; through the thickness for x; = L/4 for Problem 1. Present (-  -), Sine (Karama et al., 1993) (-),
Abaqus (Karama et al., 1993) (---).

is closer to the finite element results then to those of the Sine model. Here we can see also the continuity of
displacement and transverse shear stress between layer interfaces of the present model.

Problem 2. Bending of a clamped free beam under distributed uniform load.

In this case the value of 73 is:
h/2

ny = fidxs =¢ (38)

—h/2

Now, the governing equation from system of equations (22),
0 :A”u(l)f“ —Buw, i + 1~<¢1711
0= Buulyy, — Dnwann + Ty +q (39)
0=Kul\, = Twinn +S¢, — Y,

by integration and simultaneously solving the above equations, gives;

T
d1(x1) = Cre ™ + Cre™ — (qx1 + C3) YD,

K
uf(x1) = *A—“¢1(X1) + Crx; + Gy

T x? P 1 xd x X2
w(x) = D |:C18Px1 + Gy — (%4— C3x1> ?:| +D_11 (%4‘ C3gl> + C4El+ Csx + Cq
with
—YA, D
P YAuDu (40)
K?Dyy + T4y — SAn Dy

and (B;; = 0) due to the symmetry about mid-surface. Eight constant C; are determined by the four natural
boundary conditions at the free edge deduced from (23) with P, =0:
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0= All”(l),*l (L) — IN{d’l,l(L)
0=Dywin(L)— TQSI,II(L)
0= —Kuly(L) + Twi (L) = Sé1,(L)
0=-Dywn(L)+ T(i)l,l(l‘)
and by the four kinematics boundary conditions at clamped edge:
W(0) =0, w(0)=0, wi(0)=0, ¢(0)=0
The numerical results (Table 3), obtained (¢ = —1000 N/m) using the present model for the same beam as in

Problem 1, except for the load now being uniformly distributed instead of sinusoidal, show that the present
model still has less percentage of error as compared to the Sine model. In this case, the displacements are
closer to the numerical result given by Abaqus as compared to the Sine model. In (Figs. 5-7), different
stresses and displacement are plotted according to the length and thickness of the beam, showing the
difference between the present model and Sine model as regards the finite element. The present model is in
close agreement with the Abaqus results.

Problem 3. Bending of a clamped free beam under concentrated load.
In this case the value of N is:

o h/2

h/2

Table 3
Bending of a clamped/free thick beam under uniformly distributed load

Model Us(L) (m) Ui(L/2,h/2) (m)  a13(L/4,0) (Pa)  a1y(L/2,—h/47)  ax(L/2,h/2)
(Pa) (Pa)
Present —4.40057 x 107° 7.36497 x 1077 -3181.03 -9986.18 -1067.1
Error (%) 2.6 9.8 -2.3 7.9 -4.3
Sine (Karama et al., 1993) —437885x 106 7.19163 x 1077 —3031.42 -9939.3 ~1066.64
Error (%) 3.1 11.9 2.5 8.3 -4.3
Abaqus (Karama et al., 1993) —4.51810 x 10°° 8.16300 x 107 -3110.0 —10842.0 -1023.0
0 L/4 L2 3L/4 L
0 } } }
-20000 T \
-40000 +
60000 T
-80000 + .
o -100000 +
-120000 T
-140000 +
-160000 T
-180000 T
-200000

Fig. 5. Variation of the stress o3; along the direction x; for x; = #/4% for Problem 1. Present (- x-), Sine (Karama et al., 1993) (-),
Abaqus (Karama et al., 1993) (---).
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Fig. 6. Variation of the stress 3 along the direction x| for x; = 0 for Problem 2. Present (- % -), Sine (Karama et al., 1993) (-), Abaqus
(Karama et al., 1993) (---).

-h/2 -3h/8 -h/4 -8 0 h/8 h/4 3h/8 h/2

0 f—+—+—F+—+—+—+—

500 T N\ -
-1000 +
o~ -1500 T
-2000 T

-2500 T

-3000

Fig. 7. Variation of the stress g3 through the thickness for x; = L/2. for Problem 2. Present (- *-), Sine (Karama et al., 1993) (-),
Abaqus (Karama et al., 1993) (---).

Now, the governing equation from the system of equations (22),

0=Anuyyy — Buwin + I~<¢1:11
0 =B11u(1)§11 —Dyw i + Ff¢1,111 (42)
0= I?u?j‘“ — Twan + Shin — Y,

by integration and simultaneous solving of the above equations, gives;

T
$i0x) = Cre™™ + Coe™ — G YDy

K
i (x) = —A—“¢1(xl) + Coxy + G,

T P C x3 x?
= Cie™™ +Ce™ —Cixj= | +—=—L+ 2L+ Csx+ C
w(xp) PDi, 1 + C 3X1 7 +D11 6 + Cy ) + Csx 4+ Cs
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with

—YA,D
P= /= Rk nDun_ (43)
KDy +T74, — SA1 Dy

and (B, = 0) due to the symmetry about mid-surface. Eight constant C; are determined by the four natural
boundary conditions at the free edge deduced from (23) with P, =0:

0 =Ayul’ (L) - E¢1,1(L)
0=—Duwni(L)+ T, (L) —¢
0=—Kul (L) + Twu(L) — S¢1.1(L)
0=-Dywn(L)+ 71(151«,1([4)
and by the four kinematics boundary conditions at the clamped edge:
W(0)=0, w(0)=0, wi(0)=0, ¢(0)=0

The numerical results (Table 4), obtained (¢ = —10,000 N) using the present model for the same beam as in
Problem 2 except that loading is now concentrated at the free end of the beam, our reference still being the
Abaqus results (Karama et al., 1993), show that the present model still has very good results compared to
the Sine model except with regard to membrane stress (o) where no difference was found.

3.2. Buckling analysis

The analysis of the buckling behaviour underlines a succession of the stable equilibrium configurations
in a plane stress state. This fundamental equilibrium trajectory is followed by the structure from the
loading. Then there is a critical point where the equilibrium losses its stability; this is the buckling critical
load (Gachon, 1980) and (Palardy and Palazotto, 1990).

Problem 4. Buckling of a simply supported thin beam.

The buckling is a non-linear static problem with large displacements. The ¢; strain is composed of a
linear part and a non-linear part (Widera and Logan, 1980): &, = Uy, + (1/2)(w,)".
The non-linear term modifies the value of the virtual power of the internal work as follows:

* __ p*L *NL
Piy =Py + Fg)

t 0 0 (44)
P@ = —/0'11W111W dQ :/ N“WY“W dx1 - N“WJW
Q 0
Table 4
Bending of a clamped/free thick beam under concentrated load
Model Us(L) (m) U, (L/2,h/2) (m) a13(L/4,0) (Pa) on(L/2,—h/4") (Pa)
Present —1.67021 x 10-° 2.87160 x 107¢ —6699.43 —62969.5
Error (%) 0.1 8.8 4.7 -14
Sine (Karama et al., 1993) —1.65722 x 1073 2.81698 x 107¢ —-6372.07 —62969.5
Error (%) 0.8 10.5 9.3 -14

Abaqus (Karama et al., 1993) —1.67110 x 1073 3.14800 x 10-° -7027.0 —62091.0
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with
h/2
N, = / o), dx; = compression load
—h/2
The equilibriums in Egs. (22) are modified by the non-linear terms:
0= Auu(l)ﬁl —Buwin + Ky
0 = Byu)y, — Duwann + Ty +Niywon (45)
0= K“?,*n —Twin+S¢1 1 — Y,
The Levy type solution supposes u!, w and ¢, as follows:

u(l) = Url COs anh w= I/VnSin anla d)l = ¢n COS anh

-(7)
n L
where n is an integer. To determine the critical buckling load, the value of N, found has to cancel the

determinant of the system (45). By changing the n, for the different buckling modes, the different critical
loads can be obtained, giving;

with

V(KB T — A4, T* — B%,S) — B, Y
YAK? — A1 S) — 4, Y

NPIC = _Nlol = ‘//i Dy — (46)

In (Table 5), the critical buckling load is calculated for different modes of buckling using the present model.
Until six mode of buckling, there is no difference has found between present and Sine model as compare to
numerical results by Abaqus (Karama et al., 1993). After sixth mode of buckling, results by both models
diverge progressively with same percentage of error.

3.3. Free vibration analysis

The dynamic analysis is realised in the free vibration case. All the terms of the motion equation (22) are
taken into account. Two studies in free vibration, with and without initial load are developed. In each
problem this concerns simply supported thick and thin beams. The surface and volume components are
cancelled in two studies.

Table 5
Critical loads for the buckling of a simply supported thin beam for the first six modes
N N e (N)—Present Error (%) N e (N)—Sine Error (%) N)jc (N)—Abaqus
(Karama et al., 1993) (Karama et al., 1993)
1 20362279.35 0.09 20362280.0 0.09 20381400.0
2 76428157.72 -0.03 76428160.0 -0.03 76407200.0
3 155963320.2 0.56 155963320.0 0.56 156844000.0
4 245376869.5 2.17 245376870.0 2.17 250822000.0
5 334136061.5 4.69 334136060.0 4.69 350573000.0
6 416057469.7 7.80 416057470.0 7.80 451275000.0
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Problem 5. Free vibration without an initial load.

The equation system is deduced from equations of motions (22):
re :Allu?fll —Buw, i + 1~(¢1ﬁ11
re = Bllu?,*m —Dpyw i + T¢1,111 (47)
r' = INQI?TU - fW,m + S(bl,n - 174)1

The Levy type solution supposes:
U = U, cos (,x;) exp(iwr)
w = W, sin (¥,x;) exp(iwt) (48)
¢, = @, cos (Y,x1) exp(iwt)

with , = nn/L, n is an integer for the number of mode.
To determine the vibration frequency, the determinant of the system of equation (47) equals zero:

Iwwz WzAll [uw’l/jnwz + W;Bll uu)w lp K Un
Iuw lp (,U + l// Bll Iwa)2 +Iw"//iw2 - lpiDll I(ow l// (U + lﬂ T VV;! =0 (49)
Lo@® — 2K Ly, 0+ T 1,0 =28 — Y | \ P

So, now for different values of n, different equation are obtained, in which the smallest positive root gives
the vibration frequency of associated mode n.

In (Tables 6 and 7), results are presented for the free vibration of thin and thick beams respectively. For
different modes of vibration, frequencies are calculated using the present model. In the case of the thin
beam, frequencies are found to be very close to Abaqus, as far as the 10th mode of vibration, compared to
the Sine model, but after the 10th mode, results diverge compared to the Sine model. However there is no
big difference of error between the two models, the maximum error obtained with the present model is less
than 0.9%, and 1.5% with the Sine model as far as the 12th mode of vibration.

In the case of the thick beam, the results are more or less unfavourable with the present model compared
to the Sine model. However, frequencies diverge very rapidly after the Sth mode compare to the Sine model.

Table 6
Free vibration without an initial load
Mode n Present w (Hz) Error (%) Sine (Karama et al., Error (%) Abaqus (Karama et al.,
1993) w (Hz) 1993) w (Hz)
1 14.958 0.06 14.96 0.09 14.95
2 57.796 0.34 57.866 0.46 57.60
3 123.396 0.49 123.696 0.73 122.80
4 205.647 0.71 206.419 1.09 204.20
5 299.105 0.84 300.593 1.35 296.60
6 399.659 0.87 402.062 1.48 396.20
7 504.518 0.78 507.956 1.47 500.60
8 611.909 0.59 616.420 1.33 608.30
9 720.773 0.32 726.316 1.09 718.50
10 830.501 -0.02 836.978 0.76 830.70
11 940.779 -0.39 948.037 0.37 944.50
12 1051.465 —-0.81 1059.307 -0.07 1060.0

Vibration frequencies for a thin beam for the first 12 modes.
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Table 7
Free vibration without an initial load
Mode n Present w (Hz) Error (%) Sine (Karama et al.,  Error (%) Abaqus (Karama et al.,
1993) o (Hz) 1993) w (Hz)
1 83.050 0.18 83.698 -0.96 82.90
2 195.501 -2.54 195.730 2.43 200.60
3 317.232 -2.18 313.402 3.36 324.30
4 453.926 0.85 441.776 1.85 450.10
5 608.250 5.53 583.718 -1.27 576.40
6 780.830 11.10 740.575 -5.37 702.80
7 970.985 17.11 912.647 -10.08 829.10
8 1177.229 23.21 1099.501 -15.07 955.50

Vibration frequencies for a thick beam for the first 12 modes.

Problem 6. Free vibration with an initial load.

An initial load is added to study the influence of this initial constraint on the free vibration of Problem 5.
This load has the same direction as the buckling study, but its value is lower than the first critical load. In
this analytical resolution, the non-linear term defined in the buckling study is taken into account.

The system of equations deduced from the motion of equations (22):

' =A11”?T11 — Buwin +1~<¢1,11
I = Byulyy — Duwan + Ty + Nywa .
@ — I?u?f“ - ?W,m + 8¢ — Yo,

To determine the vibration frequency, using the Levy type solution equation (48), the determinant of the
system of equation (50) is equal to zero:

2 3
lﬁ All Iuw W wZ + l/j Bll uu)w ‘/j K Un
2 4 2
[uwlp w2+lp,,Bll [ C() +[wlp C() _l//Dll N1011p,, Iu)wlp (U +'~p T VV" =0 (51)
Lo®* —’K L, 0> + YT I,0* —y>S —Y | \ @
Table 8
Free vibration with an initial load
Mode n Present w (Hz) Error (%) Sine (Karama et al., Error (%) Abaqus (Karama et al.,
1993) w (Hz) 1993) w (Hz)
1 10.67 -0.12 10.67 -0.05 10.68
2 53.87 0.19 53.95 0.33 53.77
3 119.35 0.42 119.67 0.68 118.86
4 201.38 0.60 202.17 0.99 200.19
5 294.55 0.70 296.06 1.21 292.51
6 394.77 0.69 397.20 1.31 392.06
7 499.26 0.58 502.73 1.28 496.39
8 606.26 0.31 610.80 1.06 604.39
9 714.70 0.08 720.29 0.87 714.10
10 824.01 -0.26 830.53 0.53 826.16
11 933.84 —-0.65 941.15 0.13 939.95
12 1044.09 -1.06 1051.97 —-0.32 1055.30

Vibration frequencies for a thin beam for the first 12 modes.
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So, now, for different values of n, different equations are obtained, in which the smallest positive root gives
the vibration frequency of the associated mode n.

In the (Table 8), results are presented for the free vibration with an initial load (-107 N). For different
modes of vibration, the frequencies are calculated using the present model. In the case of the thin beam, the
maximum error found less than 0.75% with the present model, and 1.35% with the Sine model as far as the
11th mode of vibration, but after the 11th mode of vibration, the results are unfavourable with the present
model.

4. Conclusion

The new multi-layered structure exponential model satisfies exactly and automatically the continuity
condition of displacements and transverse shear stresses at interfaces, as well as the boundary conditions
for a laminated composite with the help of the Heaviside step function (Figs. 1-7). For the new proposed
model the results are compared with the existing model (Karama et al., 1993) like Sine model proposed by
Touratier (1991) and by the finite element method by (Abaqus) (Karama et al., 1993). Results show that the
new proposed exponential model is more precise or closer to finite element results than the Sine (Karama
et al., 1993) model except for some results (Tables 1-8).

The new model is also simple in so far as any correction factor is used in opposition to the higher order
models. The innovation in relation to the model proposed in the bibliography is also the introduction of the
membrane refinement function g(x;), which represents the counterpart of the transverse shear function
f(x3), which allows the x; to improve membrane refinement and then warping of the straight section in
bending deformations (Table 1).

In the case of static analysis, (Tables 2-4) presents the numerical results for the bending deformation
under different types of loading and boundary conditions on a thick beam, showing that the present model
is much closer to the finite element analysis by Abaqus (Karama et al., 1993) than the Sine model (Karama
et al., 1993). In (Figs. 1-8), different stresses and displacements are plotted with respect to the thickness and
length for bending deformation, showing that the present model is still trying to approach the finite element
results (Karama et al., 1993) much closely than the Sine model (Karama et al., 1993).

In the dynamic analysis, numerical results are more or less are favourable with the Abaqus reference.

As a whole we can conclude the present exponential model is more precise than other existing analytical
models for multi-layered structures compared to finite element analysis.

8.00E-07
6.00E-07 T
4.00E-07
2.00E-07

5 0.00E+00
2.00E-077}
-4.00E-07
6.00-07 £

-8.00E-07

Fig. 8. Variation of the displacement U; through the thickness for x; = L/4 for Problem 2. Present (- *-), Sine (Karama et al., 1993) (-),
Abaqus (Karama et al., 1993) (---).
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Appendix A. Virtual power of the acceleration quantities
We have,
U =il —xsw; + iy, Us=w and U =ud —x3w' + hdp], Ui=w"
So Eq. (6) becomes,
P = /Qp(Ul*Ul + U;U3)dQ

By the integration by parts:

P(*a) = / p[u?*ul + (u3 +X31}1,1)W* + hl (x;)tj)ful]dQ - / pX3W*1.;l1 dr
Q

r

and, now:

Py = / P[(u? — X3W +h1(x3)q5l)u?* + (W+x3(ﬁ?‘,1 — X3W 11 +h1(x3)q',’5111))w*
Q

+ hl(x3)<i't? —x3W; + hl()q)(j)])qﬂ dQ — /r X3 (u? —x3W + hl(x3)¢)1)w* dr

L h/2 h/2 h/2 .
P(tl> = / [(/ pd)@)ll? + / ( — PX3 d)C3)1'4'),1 + / (phl(X3)dX3)d)l>u(l)*
0 —h/2 —h)2 —h)2

h2 h/2 h/2 h/2 ..
+ </ de3)w+/ (px3 docs )it | —/ (px3 docs )iy +/ (px3h1(x3)dx3)¢>l‘l>w*

/2 —h/2 —h/2 —h/2

h/2 h/2 h/2
T ( [ omai+ [ (= prae i, + [ (ph%<x3>dx3)¢l>¢;‘ de
—h/2 ) —h)2
h/2 h/2 h/2 }
+ (/ (= px3dxs)it] + / (px3dxs)iv; + / (— szhl(xs)dx3)¢1>W*]
—h/2 "y —h/2

and now by relations (7),

L
P(’;> :/ (F(u)u(l)* +F(W)W* +F(¢)¢T)dxl +I—~(w)w*
0

Appendix B. Virtual power of the internal work

By relation (11), virtual power of the internal work (10) become:

. 1 )
Py = _/Q {(“?1 — X3W +h1(x3)¢1,1)<711 +2(§hlﬁ3(x3)¢1>013} dQ

P(’;) = —/ (()'Hu?f] —X3WT11611 +h1()€3)611¢?1 + 0'13}11‘3()63)(]59{)(19
Q

(A.4)

(A.5)
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Now, by integrating each term by parts;

/ 0111u1 —x301111W —h (x%)Gnl(f)] +h1%(x3)0'13¢]

/[Ullul *X30'11W + 301w + Iy (X3)011¢}
r

2 h/2 h/2
= l( Jllldx3> (/ X3011,11dx3>w*+ < hl(xa)alu dxs)ﬁ
2 —h/2 —h/2

h/
—h/
h/2
h13 X3 Gladx3 ¢T
h/

h/2 h/2
- (/ x3011,1dx3>W* - (/ hl(x3)011dx3> Q”T]
—h/2 —h/2

Now by relations (12),

dx; +

2

L
Py = / (Niaud™ + My gw* + (Pig — Pi) ) dxy — Nypud™ — My w* + Myw' — Py
0

Appendix C. Virtual power of the external loading

By relations (15), virtual power of external loading (14), becomes;

fi F
7= [1vr o w|n |ae+ [(u o vl 5 ar
¢ f3 r B

Py = /Q(flUl* +f3U3*)dQ+/F(FlU,* + FRU;)dIr

h/2 h/2
— / 011dX3 u?* + / X3011dX3 Wjﬁl
—h/2 —h/2 '

1545

(B.3)

(C.1)

(C.2)

Py = / (il — fixaw', b ()i fow)dQ + / (Fud® — Foeaw', + i () Fi, + Fw)dl (C.53)
r

L n/2 /2 h/2
P(Z):/ [( fldx3>“(1)*+< fsdx3+/ xsfl,ldx3>w
0 —h/2 —h/2 —h/2
n/2 /2 h/2 n/2
+</ mmmm&ﬁ (/ RMJW+</ Emf/
—h/2 —h/2 —h/2 —h/2
h/2 h/2
+ (/ hl(X3)F1 dX3> d)T — </ )C3F1 dX3> W*]‘|
—h/2 —h/2

and now by relation (15),

dx; +

L
P{;) = ‘/0 (ﬁlu?* + (ﬁ3 +W1‘1)w* +171¢T)dx1 +N1u?*(ﬁg —Wl)w* _le,*l -|—I31(]5)1k

(C4)
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